题目内容

5.解方程组:$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=3\sqrt{2}}\\{\sqrt{3}x-\sqrt{2}y=2\sqrt{3}}\end{array}\right.$.

分析 方程组利用加减消元法求出解即可.

解答 解:$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=3\sqrt{2}①}\\{\sqrt{3}x-\sqrt{2}y=2\sqrt{3}②}\end{array}\right.$,
①×$\sqrt{2}$+②×$\sqrt{3}$得:5x=12,即x=$\frac{12}{5}$,
把x=$\frac{12}{5}$代入①得:y=$\frac{\sqrt{6}}{5}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{12}{5}}\\{y=\frac{\sqrt{6}}{5}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网