题目内容
若点C是线段AB的黄金分割点,则等于__.
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.
(1)求y与x的函数关系式;
(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?
一次函数y=﹣x+1与反比例函数y=,x与y的对应值如下表:
x
﹣3
﹣2
﹣1
1
2
3
y=﹣x+1
4
0
Y=
﹣
不等式﹣x+1>﹣的解为_____.
如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为 .
下列式子错误的是( )
A. cos40°=sin50°
B. tan15°•tan75°=1
C. sin225°+cos225°=1
D. sin60°=2sin30°
如图1所示,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于C点,D为抛物线的顶点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,分别作直线AE、DE.
(1)求此二次函数的关系式;
(2)在图1中,直线DE上有一点Q,使得△QCO≌△QBO,求点Q的坐标;
(3)如图2,直线DE与x轴交于点F,点M为线段AF上一个动点,有A向F运动,速度为每秒2个单位长度,运动到F处停止,点N由F处出发,沿射线FE方向运动,速度为每秒 个单位长度,M、N两点同时出发,运动时间为t秒,当M停止时点N同时停止运动坐标平面内有一个动点P,t为何值时,以P、M、N、F为顶点的四边形是特殊的平行四边形.请直接写出t值.
若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是( )
A. B. C. D.
先化简,再求值:,其中m是方程x2+2x﹣3=0的根.