题目内容

如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).

解:∵BC∥AD,CD∥AB,
∴四边形ABCD是平行四边形,
∴CD=AB=2
∴S梯形OBCD==
∴图中阴影部分的面积等于S梯形OBCD-S扇形OBD=-×π×12=-
分析:阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.
点评:此题主要考查扇形的面积计算方法及平行四边形的判定与性质,不规则图形的面积一定要注意分割成规则图形的面积进行计算,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网