题目内容
如图,⊙O中,A、B、C是⊙O上三点,且∠AOC=110°,则∠ABC的度数是
- A.130°
- B.125°
- C.120°
- D.115°
B
分析:在优弧AC上任取一点D,连接AD、CD,由圆周角定理求出∠ADC的度数,再根据圆内接四边形的性质求出∠ABC的度数即可.
解答:
解:如图所示:
优弧AC上任取一点D,连接AD、CD,
∵∠AOC=110°,
∴∠ADC=
∠AOC=
×110°=55°,
∵四边形ABCD内接与⊙O,
∴∠ABC=180°-∠ADC=180°-55°=125°.
故选B.
点评:本题考查的是圆周角定理及圆内接四边形的性质,根据题意作出辅助线,构造出圆内接四边形是解答此题的关键.
分析:在优弧AC上任取一点D,连接AD、CD,由圆周角定理求出∠ADC的度数,再根据圆内接四边形的性质求出∠ABC的度数即可.
解答:
优弧AC上任取一点D,连接AD、CD,
∵∠AOC=110°,
∴∠ADC=
∵四边形ABCD内接与⊙O,
∴∠ABC=180°-∠ADC=180°-55°=125°.
故选B.
点评:本题考查的是圆周角定理及圆内接四边形的性质,根据题意作出辅助线,构造出圆内接四边形是解答此题的关键.
练习册系列答案
相关题目
| 5 |
| A、当∠AOF=90°时,四边形ABEF一定为平行四边形 | ||||
B、当四边形ABEF为直角梯形时,线段EF=
| ||||
| C、当∠AOF=45°时,四边形BEDF一定为菱形 | ||||
| D、在旋转的过程中,线段AF与EC总相等 |