题目内容

5.在△ABC中,AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,则∠BAD的度数为(  )
A.36°B.40°C.45°D.50°

分析 利用三角形的外角可得到:∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠AED=∠C+∠EDC,然后进行代换得到∠C+∠BAD=∠C+20°+20°,即可求得答案.

解答 解:∵∠ADC是三角形ABD的外角,∠AED是三角形DEC的一个外角,∠CDE=20°,
∴∠ADC=∠BAD+∠B=∠ADE+∠EDC,∠AED=∠EDC+∠C,
∠B+∠BAD=∠ADE+20°,∠AED=∠C+20°,
∵AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,
∴∠B=∠C,∠ADE=∠AED=∠C+20°,
∴∠C+∠BAD=∠C+20°+20°,
∴∠BAD=40°,
故选:B.

点评 本题主要考查了等腰三角形的性质以及三角形的外角性质,解题的关键是多次利用三角形外角的知识得到角之间的数量关系,此题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网