题目内容
若一次函数y=(2k-1)x+3的图象经过A(x1,y1)和B(x2,y2)两点,且当x1<x2时,y1>y2,则k的取值范围是( )
A. k<0 B. k>0
C. k< D. k>
如图,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.求证:△ADE≌△BEC.
解不等式组 ,并写出它的整数解.
如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0),在同一平面立角坐标系的图象是( )
A. B. C. D.
某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目的得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项的得分分别按10%、40%、20%、30%折算计入总分,根据猜测,求出甲的总分.
(2)本次大赛组委会最后决定,总分在80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项的得分折算后的分数和是20分,甲能否获得这次比赛的一等奖?
两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.
如图,在平面直角坐标系中,顶点为(2,﹣1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3),连接AB.
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
在关于x,y的方程组 中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.