题目内容
一组数据3,6,4,5,3,2,则这组数据的中位数和极差是( )
A.4.5,2 B.4,6C.4,4D.3.5,4
如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
如图,在?ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A.35° B.40° C.50°D.65°
已知正方形ABCD和正方形CEFG,连结AF交BC于点O,点P是AF的中点,过点P作PH⊥DG于H,CD=2,CG=1.
(1)如图1,点D、C、G在同一直线上,点E在BC边上,求PH的长;
(2)把正方形CEFG绕着点C逆时针旋转α(0°<α<180°)
①如图2,当点E落在AF上时,求CO的长;
②如图3,当DG=时,求PH的长.
解方程:.
抛物线y=ax2+bx+4A(1,﹣1),B(5,﹣1),与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图1,连接CB,若点P在直线BC上方的抛物线上,△BCP的面积为15,求点P的坐标;
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为弧ACE上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
如图所示,图中的“○”按某种规律排列,若第n个图中有245个“○”,则n= .