题目内容

正方形按虚线折叠,展开如图,设正方形边长为1,则DE的长是________.

-1
分析:根据勾股定理得出AC=,设DE=x,则EF=DE=x,CE=1-x,CF=AC-AD=-1,继而在Rt△CEF中利用勾股定理进行列方程,求出x的值即可.
解答:在Rt△ABC中利用勾股定理得:AC==
设DE=x,根据翻折变换的性质可知:EF=DE=x,CE=1-x,CF=AC-AD=-1,
在Rt△CEF中利用勾股定理有:CE2=EF2+CF2,(1-x)2=x2+(-1)2
解得:x=-1.
故答案为:-1.
点评:此题考查了翻折变换的知识,解答此类题目,要求我们熟练掌握翻折前后对应边相等、对应角相等,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网