题目内容

17.如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点对称的△A1B1C1
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C,求线段BC旋转过程中扫过的面积(结果保留π).

分析 (1)先根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,再连结A1B1、A1C1和B1C1即可;
(2)通过构造直角三角形旋转,画出△ABC绕点C逆时针旋转90°后CA的对应线段CA2,CB的对应线段CB2,这样可得到△A2B2C,再利用勾股定理计算出BC,然后根据扇形面积公式计算线段BC旋转过程中扫过的面积.

解答 解:(1)如图1,

(2)如图2,

BC=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
所以BC扫过的面积S扇形=$\frac{90π×(\sqrt{17})^{2}}{360}$=$\frac{17}{4}$π.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积的计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网