题目内容
关于的方程的解是正数,则的取值范围是_______.
已知2m=a,32n=b,则23m+10n=________.
请根据如图所示的对话内容回答下列问题.
(1)求该魔方的棱长;
(2)求该长方体纸盒的长.
如图,直线a∥b,∠1=50°,则∠2的度数是( )
A. 130° B. 50° C. 40° D. 150°
某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲单独做,则延误两天完成,那么规定时间是多少天?
已知x为正整数,当时x=________时,分式的值为负整数.
有下列方程:①2x+=10;②x-;③;④.属于分式方程的有( )
A. ①② B. ②③ C. ③④ D. ②④
若m2-n2=6,且m-n=3,则m+n =_______________
【答案】2
【解析】解析:∵m2-n2=(m+n)(m-n)=3(m+n)=6,
∴m+n=2.
【题型】填空题【结束】13
如果4x2+ax+9是一个完全平方式,那么a的值为______.
如图①,在矩形ABCD中,AB=10 cm,BC=8 cm.点P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后△APD的面积S1(cm2)与时间x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与时间x(秒)的函数关系图象.
(1)参照图②,求a、 b及图②中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1、y2与出发后的运动时间x(秒)的函数关系式,并求出点P、点Q相遇时x的值;
(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.