题目内容

6.如图,在Rt△ABC中,∠C=90°,AB=10,sinA=$\frac{3}{5}$,求BC的长.

分析 利用锐角三角函数的定义和勾股定理进行解答.

解答 解:如图,∵在Rt△ABC中,∠C=90°,AB=10,sinA=$\frac{3}{5}$,
∴$\frac{BC}{AC}$=$\frac{3}{5}$,
则AC=$\frac{5}{3}$BC.
又由勾股定理得到:AB2+BC2=AC2,即102+BC2=$\frac{25}{9}$BC2
∴BC=7.5.

点评 本题考查了解直角三角形.需要学生掌握锐角三角函数的概念解直角三角形问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网