题目内容
方程x2﹣3=0的根是 .
如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=40°,∠B′=110°,则∠BCA′的度数是( ).
A.110° B.80° C.40° D.30°
解方程:.
如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.
①求点P的坐标;
②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
如图,在△BDE中,∠BDE=90°,BD=,点D的坐标是(7,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 .
用配方法解下列方程时,配方正确的是( )
A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4
B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015
C.方程a2+8a+9=0,可化为(a+4)2=25
D.方程2x2﹣6x﹣7=0,可化为
下列交通标志中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是 .
如图,△ABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB=,点P为CD上一动点,当BP+CP最小时,DP= .