题目内容
18.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?
分析 (1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1-降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可得出关于m的一元一次不等式,解不等式即可得出结论.
解答 解:(1)设该种商品每次降价的百分率为x%,
依题意得:400×(1-x%)2=324,
解得:x=10,或x=190(舍去).
答:该种商品每次降价的百分率为10%.
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,
第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);
第二次降价后的单件利润为:324-300=24(元/件).
依题意得:60m+24×(100-m)=36m+2400≥3210,
解得:m≥22.5.
∴m≥23.
答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.
点评 本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系得出关于x的一元二次方程;(2)根据数量关系得出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.
练习册系列答案
相关题目
6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )
| A. | v=320t | B. | v=$\frac{320}{t}$ | C. | v=20t | D. | v=$\frac{20}{t}$ |
3.下列判断错误的是( )
| A. | 两组对边分别相等的四边形是平行四边形 | |
| B. | 四个内角都相等的四边形是矩形 | |
| C. | 四条边都相等的四边形是菱形 | |
| D. | 两条对角线垂直且平分的四边形是正方形 |
10.下列计算中正确的是( )
| A. | a•a2=a2 | B. | 2a•a=2a2 | C. | (2a2)2=2a4 | D. | 6a8÷3a2=2a4 |