题目内容
【题目】参照学习函数的过程方法,探究函数
的图像与性质,因为
,即
,所以我们对比函数
来探究列表:
| … | -4 | -3 | -2 | -1 |
|
| 1 | 2 | 3 | 4 | … | |
| … |
|
| 1 | 2 | 4 | -4 | -2 | -1 |
|
| … | |
| … |
|
| 2 | 3 | 5 | -3 | -2 | 0 |
|
| … |
描点:在平面直角坐标系中以自变量
的取值为横坐标,以
相应的函数值为纵坐标,描出相应的点如图所示:
![]()
(1)请把
轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当
时,
随
的增大而______;(“增大”或“减小”)
②
的图象是由
的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数
与直线
交于点
,
,求
的面积.
【答案】(1)如图所示,见解析;(2)①增大;②上,1;③
;(3)1.
【解析】
(1)按要求把
轴左边点和右边各点分别用一条光滑曲线顺次连接起来即可;
(2)①观察图像可得出函数增减性;②由表格数据及图像可得出平移方式;③由图像可知对称中心;
(3)将
与
联立求解,得到A、B两点坐标,将△AOB分为△AOC与△BOC计算面积即可.
(1)如图所示:
![]()
(2)①由图像可知:当
时,
随
的增大而增大,故答案为:增大;
②由表格数据及图像可知,
的图象是由
的图象向上平移1个单位而得到的,故答案为:上,1;
③由图像可知图像关于点(0,1)中心对称.
(3)
,解得:
或![]()
∴A点坐标为(-1,3),B点坐标为(1,-1)
设直线
与y轴交于点C,当x=0时,y=1,
所以C点坐标为(0,1),如图所示,
![]()
S△AOB= S△AOC+ S△BOC
=![]()
=![]()
=![]()
所以△AOB的面积为1.
【题目】某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),经多次测试后,得到如下部分数据:
x/米 | 0 | 0.2 | 0.4 | 0.6 | 1 | 1.4 | 1.6 | 1.8 | … |
y/米 | 0.24 | 0.33 | 0.4 | 0.45 | 0.49 | 0.45 | 0.4 | 0.33 | … |
(1)由表中的数据及函数学习经验,求出y关于x的函数解析式;
(2)试求出当乒乓球落在桌面时,其落点与端点A的水平距离是多少米?
(3)当乒乓球落在桌面上弹起后,y与x之间满足
.
①用含a的代数式表示k;
②已知球网高度为0.14米,球桌长(1.4×2)米.若a=-0.5,那么乒乓球弹起后,是否有机会在某个击球点可以将球沿直线扣杀到端点A?请说明理由.
![]()