题目内容
求证:AC⊥BC.
分析:连接OD,则OA=OD,∠1=∠3,OD⊥BC,由AD平分∠BAC,∠1=∠2=∠3,可知AC∥OD,故∠ACD=90°.
解答:
证明:连接OD,(1分)
∵OA=OD,
∴∠1=∠3; (3分)
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,(6分)
∴OD∥AC; (7分)
∵BC是⊙O的切线,
∴OD⊥BC. (8分)
∴AC⊥BC. (10分)
∵OA=OD,
∴∠1=∠3; (3分)
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,(6分)
∴OD∥AC; (7分)
∵BC是⊙O的切线,
∴OD⊥BC. (8分)
∴AC⊥BC. (10分)
点评:本题考查的是圆切线及角平分线的性质,比较简单.
练习册系列答案
相关题目