题目内容

3.如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P、Q分别是边OB,OA上的动点,记∠AMP=∠1,∠ONQ=∠2,当MP+PQ+QN最小时,则关于∠1,∠2的数量关系正确的是(  )
A.∠1+∠2=90°B.2∠2-∠1=30°C.2∠1+∠2=180°D.∠1-∠2=90°

分析 如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,根据外角的性质得到∠1=∠O+∠OPM,∠OPM=∠1-∠O=∠1-30°,由轴对称的性质得到∠OPM=∠OPM′,∠OPM′=∠QPN,于是得到∠QPN=∠1+30°,由于∠3=∠O+∠2=30°+∠2,∠NQN′=∠QPN+∠2=∠1-30°+∠2,∠NQN′=2∠3,即可得到结论.

解答 解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,
∵∠1=∠O+∠OPM,
∴∠OPM=∠1-∠O=∠1-30°,
∵∠OPM=∠OPM′,∠OPM′=∠QPN,
∴∠QPN=∠PQO+30°
∵∠3=∠O+∠2=30°+∠2,∠NQN′=∠QPN+∠2=∠1-30°+∠2,∠NQN′=2∠3,
∴∠1-30°+∠2=2(30°+∠2),
∴∠1-∠2=90°.
故选D.

点评 本题考查了轴对称-最短路线问题,三角形的外角的性质,正确的作出图形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网