题目内容
一张直角三角形纸片,其中有一个内角为,最小边长为2,点D、E分别是一条直角边和斜边的中点,先将纸片沿DE剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是 .
设a=-1,a在两个相邻整数之间,则这两个整数是( )
A.1和2 B.2和3 C.3和4 D.4和5
在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图2是由图1放入矩形内得到的,,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为__________.
如图,在平行四边形ABCD中,AB=5,BC=12,对角线交于点O,∠BAD的平分线交BC于E、交BD于F,分别过顶点B、D作AE的垂线,垂足为G、H,连接OG、OH.
(1)补全图形;
(2)求证:OG=OH;
(3)若OG⊥OH,直接写出∠OAF的正切值.
如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=-的图象交于A(-1,m),B(n,-3)两点,一次函数y=kx+b的图象与y轴交于点C.
(1)求一次函数的解析式;
(2)点P是x轴上一点,且△BOP的面积是△BOC面积的2倍,求点P的坐标.
分解因式:m-9m= .
四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为( )
A. B. C. D.1
如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为( )
A. B. C. D.3
如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是 .