题目内容
如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为( )
A. B. C. D.3
如右图是由四个相同的小正方体组成的立体图形,它的俯视图为( )
一张直角三角形纸片,其中有一个内角为,最小边长为2,点D、E分别是一条直角边和斜边的中点,先将纸片沿DE剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是 .
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你写出勾股定理内容(用文字语言表述):
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以(a+b)为高的直角梯形(如图2),请你利用图2,证明勾股定理.
如图,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放着的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .
设a,b是方程的两个实数根,则的值为( )
A.2014 B.2015 C.2016 D.2017
某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
图中几何体的左视图是( )
端午节吃粽子是中华民族的传统习俗,妈妈买了2个红豆粽,2只肉粽,粽子除了内部馅料不同外其他均相同,小颖随意吃了两个,则她吃到一只红豆粽、一只肉粽的概率是 .