题目内容
8.七(1)班有53名学生,七(2)班有45名学生,从(1)班调多少人到(2)班,使两个班人数相等,设从(1)班调x人到(2)班,则依题意得方程为53-x=45+x.分析 要列方程,首先要理解题意找出存在的等量关系:一班原来的人数-调走的人数=二班原来的人数+调入的人数,此时再列方程就容易多了.
解答 解:设从(1)班调x人到(2)班,则依题意得方程为53-x=45+x,
故答案为:53-x=45+x.
点评 此题考查一元一次方程的应用,关键是要弄清人员调动前后两个班级的学生数量,然后找出的等量关系列出方程.
练习册系列答案
相关题目
18.
如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则弦BC的长为( )
| A. | 3.5 | B. | 2$\sqrt{2}$ | C. | $\frac{\sqrt{39}}{2}$ | D. | $\frac{\sqrt{15}}{2}$ |