题目内容
如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,
EF=,则AB的长是 .
已知⊙O1和⊙O2的半径分别是一元二次方程(x-1)(x-2)=0的两根,且O1O2=2,则⊙O1和⊙O2的位置关系是 .
解不等式组:.
计算8a3÷(-2a)的结果是( )
A.4a B.-4a C.4a2 D.-4a2
如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作的垂直平分线,交于点,交于点;
②以为圆心,为半径作圆,交的延长线于点.
⑵在⑴所作的图形中,解答下列问题.
①点与的位置关系是_____________;(直接写出答案)
②若,,求的半径.
已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m+n的值是( )
A.-10 B.10 C.-6 D.2
下列运算正确的是( )
A.(2a2)3=6a6 B.-a2b2•3ab3=-3a2b5
C. D.
如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
某电视台为了解观众对“跑男”综艺节目的喜爱情况,随机抽取某社区部分观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:
请根据以上信息,解答下列问题:
(1)求被调查的男观众中,表示“不喜欢”的男观众所占的百分比是多少?
(2)求这次调查的女观众人数,并直接补全条形统计图.
(3)在扇形统计图中,“一般”所对应的圆心角为 度.
(4)若该社区有女观众约1000人,估计该社区女观众喜欢看“跑男”综艺节目的有多少人?