题目内容

13.如图,Rt△ABC中,∠ACB=90°,BC=6,AC=8,现将△ABC折叠,使点A与点B重合,折痕为DE,则tan∠CBE=$\frac{7}{24}$.

分析 先根据图形翻折变换的性质得出BE=AE,设CE=x,则BE=AE=8-x,根据勾股定理求出x的值,再由锐角三角函数的定义即可得出结论

解答 解:解:∵△BDE由△ADE翻折而成,
∴BE=AE.
设CE=x,则BE=AE=8-x,
在Rt△BCE中,BC2+CE2=BE2,即62+x2=(8-x)2,解得x=$\frac{7}{4}$,
∴tan∠CBE=$\frac{CE}{BE}$=$\frac{\frac{7}{4}}{6}$=$\frac{7}{24}$.
故答案为$\frac{7}{24}$.

点评 本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网