题目内容
阅读下面例题的解答过程:
例:因式分解:(1)x2+x-2(2)x2-2x-3
解:(1)x2+x-2=x2+(2-1)x-2=x2+2x-x-2
=(x2+2x)-(x+2)=x(x+2)-(x+2)=(x+2)(x-1)
(2)x2-2x-3=x2+(1-3)x-3=x2+x-3x-3
=(x2+x)-(3x+3)=x(x+1)-3(x+1)=(x+1)(x-3)
根据例题提示的因式分解的方法把下列各式分解因式:
(1)x2+3x+2;(2)x2-6x+8.
例:因式分解:(1)x2+x-2(2)x2-2x-3
解:(1)x2+x-2=x2+(2-1)x-2=x2+2x-x-2
=(x2+2x)-(x+2)=x(x+2)-(x+2)=(x+2)(x-1)
(2)x2-2x-3=x2+(1-3)x-3=x2+x-3x-3
=(x2+x)-(3x+3)=x(x+1)-3(x+1)=(x+1)(x-3)
根据例题提示的因式分解的方法把下列各式分解因式:
(1)x2+3x+2;(2)x2-6x+8.
分析:(1)利用十字相乘法分解因式得出即可;
(2)利用十字相乘法分解因式得出即可.
(2)利用十字相乘法分解因式得出即可.
解答:解:(1)x2+3x+2=(x+1)(x+2);
(2)x2-6x+8=(x-2)(x-4).
(2)x2-6x+8=(x-2)(x-4).
点评:此题主要考查了十字相乘法分解因式,正确将常数项分解得出是解题关键.
练习册系列答案
相关题目