ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ËıßÐÎABCOÊǾØÐΣ¬µãA£¨3£¬0£©£¬B£¨3£¬4£©£¬¶¯µãM¡¢N·Ö±ð´ÓµãO¡¢B³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£¬ÆäÖеãMÑØOAÏòÖÕµãAÔ˶¯£¬µãNÑØBCÏòÖÕµãCÔ˶¯£®¹ýµãN×÷NP¡ÎOC£¬½»ACÓÚµãP£¬Á¬½ÓMP£¬ÒÑÖª¶¯µãÔ˶¯ÁËxÃ룬¡÷MPAµÄÃæ»ýΪS£®£¨1£©ÇóµãPµÄ×ø±ê£®£¨Óú¬xµÄ´úÊýʽ±íʾ£©
£¨2£©Ð´³öS¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³öSµÄ×î´óÖµ£®
£¨3£©µ±¡÷APMÓë¡÷ACOÏàËÆÊ±£¬Çó³öµãPµÄ×ø±ê£®
£¨4£©¡÷PMAÄÜ·ñ³ÉΪµÈÑüÈý½ÇÐΣ¿ÈçÄÜ£¬Ö±½Óд³öËùÓеãPµÄ×ø±ê£»Èç²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÏÈÈ·¶¨Ö±ÏßABµÄ½âÎöʽ£¬ÒÔ¼°NµãµÄ×ø±êºó¿ÉÒÔÈ·¶¨PµãµÄºá×ø±ê£¬ÔÙ°ÑËü´úÈëÖ±Ïß·½³Ì½â³öPµã×ø±ê£®
£¨2£©ÓÉPµãµÄ×Ý×ø±ê¿ÉÒÔÖªµÀ¡÷MPAÖбßAMÉϵĸߣ¬ÔÙÇó³öAMµÄ³¤£¬¼´¿ÉÇóµÃÈý½ÇÐÎÃæ»ý£®
£¨3£©µ±¡÷APMÓë¡÷ACOÏàËÆÊ±¡ÏAPM=90¡ã£¬
=
»òÕß
=
£¬¸ù¾ÝÕâ¸öʽ×ÓÁгöµÈÁ¿¹ØÏµ¿ÉÒÔÇóµÃxµÄÖµ£®½ø¶øÇóµÃPµã×ø±ê£®
£¨4£©¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐÎʱ£¬ÓÐÁ½±ß³¤ÏàµÈ£¬´Ëʱ·ÖÈýÖÖÇé¿ö¢ÙAM=AP£»¢ÚAP=PM£»¢ÛMP=MA£»¸ù¾Ý¹´¹É¶¨ÀíµÃ³ö¹ØÓÚxµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿É£®
£¨2£©ÓÉPµãµÄ×Ý×ø±ê¿ÉÒÔÖªµÀ¡÷MPAÖбßAMÉϵĸߣ¬ÔÙÇó³öAMµÄ³¤£¬¼´¿ÉÇóµÃÈý½ÇÐÎÃæ»ý£®
£¨3£©µ±¡÷APMÓë¡÷ACOÏàËÆÊ±¡ÏAPM=90¡ã£¬
| AP |
| AM |
| AO |
| AC |
| AM |
| AP |
| AO |
| AC |
£¨4£©¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐÎʱ£¬ÓÐÁ½±ß³¤ÏàµÈ£¬´Ëʱ·ÖÈýÖÖÇé¿ö¢ÙAM=AP£»¢ÚAP=PM£»¢ÛMP=MA£»¸ù¾Ý¹´¹É¶¨ÀíµÃ³ö¹ØÓÚxµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿É£®
½â´ð£º½â£º£¨1£©ÉèÖ±ÏßACµÄ½âÎöʽΪ£ºy=kx+b£¬
¹ýµãA£¨3£¬0£©¡¢C£¨0£¬4£©£¬½âµÃ£º
y=-
x+4£¬
Nµã×ø±êΪ£¨3-x£¬4£©£¬ËùÒÔPµãºá×ø±êΪ£º3-x£¬
´úÈëÖ±Ïß½âÎöʽµÃ×Ý×ø±êΪ
x£¬
ËùÒÔPµã×ø±êΪ£º£¨3-x£¬
x£©£»
£¨2£©AM±ßÉϵĸßΪPµã×Ý×ø±ê£¬
ËùÒÔÓУºh=
x£¬
Mµã×ø±êΪ£¨x£¬0£©£¬
AM=3-x£¬
ËùÒÔÓУºS=
AM•h£¬
½âµÃ£ºS=-
x2+2x=-
(x-
)2 +
£¬
½âµÃSµÄ×î´óֵΪ
£¬
£¨3£©ÓÉÌâÄ¿¿ÉÖªAO=3£¬AC=5£¬AM=3-x£¬AP=
x£¬
¡ß
=
¡à
=
£¬½âµÃ£º
x=
£¬¼´Pµã×ø±êΪ£¨
£¬
£©£¬
ͬÀí¿ÉµÃµ±
=
ʱ£¬
Pµã×ø±êΪ£¨
£¬2£©£»
¹ÊÓÐPµã×ø±êΪ£ºP1£¨
£¬
£©¡¢P2£¨
£¬2£©£»
£¨4£©¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐΣ¬
ÓÐÈýÖÖÇé¿ö£º¢ÙAM=APʱ£¬[3-£¨3-x£©]2+(0-
x)2=£¨3-x£©2£¬
½âµÃ£ºx1=
£¬x2=-
£¨ÉáÈ¥£©£¬
¡à3-x=
£¬
x=
£¬
¡àPµÄ×ø±êÊÇ£¨
£¬
£©£¬
¢ÚAP=PMʱ£¬[3-£¨3-x£©]2+(0-
x)2=[£¨3-x£©-x]2+(
x-0)2£¬
½âµÃ£ºx1=1£¬x2=3£¨ÉáÈ¥£©£¬
¡à3-x=2£¬
x=
£¬
¡àPµÄ×ø±êÊÇ£¨2£¬
£©£¬
¢ÛMP=MAʱ£¬[£¨3-x£©-x]2+(
x-0)2=£¨3-x£©2£¬
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=
£¬
¡à3-x=
£¬
x=
£¬
¡àPµÄ×ø±êÊÇ£¨
£¬
£©£¬
¼´PµãµÄ×ø±ê·Ö±ðΪ
P1£¨2£¬
£©¡¢P2£¨
£¬
£©¡¢P3£¨
£¬
£©£®
´ð£º¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐΣ¬´ËʱPµãµÄ×ø±ê·Ö±ðΪ
P1£¨2£¬
£©¡¢P2£¨
£¬
£©¡¢P3£¨
£¬
£©£®
¹ýµãA£¨3£¬0£©¡¢C£¨0£¬4£©£¬½âµÃ£º
y=-
| 4 |
| 3 |
Nµã×ø±êΪ£¨3-x£¬4£©£¬ËùÒÔPµãºá×ø±êΪ£º3-x£¬
´úÈëÖ±Ïß½âÎöʽµÃ×Ý×ø±êΪ
| 4 |
| 3 |
ËùÒÔPµã×ø±êΪ£º£¨3-x£¬
| 4 |
| 3 |
£¨2£©AM±ßÉϵĸßΪPµã×Ý×ø±ê£¬
ËùÒÔÓУºh=
| 4 |
| 3 |
Mµã×ø±êΪ£¨x£¬0£©£¬
AM=3-x£¬
ËùÒÔÓУºS=
| 1 |
| 2 |
½âµÃ£ºS=-
| 2 |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
½âµÃSµÄ×î´óֵΪ
| 3 |
| 2 |
£¨3£©ÓÉÌâÄ¿¿ÉÖªAO=3£¬AC=5£¬AM=3-x£¬AP=
| 5 |
| 3 |
¡ß
| AP |
| AM |
| AO |
| AC |
¡à
| ||
| 3-x |
| 3 |
| 5 |
x=
| 27 |
| 34 |
| 75 |
| 34 |
| 18 |
| 17 |
ͬÀí¿ÉµÃµ±
| AM |
| AP |
| AO |
| AC |
Pµã×ø±êΪ£¨
| 3 |
| 2 |
¹ÊÓÐPµã×ø±êΪ£ºP1£¨
| 75 |
| 34 |
| 18 |
| 17 |
| 3 |
| 2 |
£¨4£©¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐΣ¬
ÓÐÈýÖÖÇé¿ö£º¢ÙAM=APʱ£¬[3-£¨3-x£©]2+(0-
| 4 |
| 3 |
½âµÃ£ºx1=
| 9 |
| 8 |
| 9 |
| 2 |
¡à3-x=
| 15 |
| 8 |
| 4 |
| 3 |
| 3 |
| 2 |
¡àPµÄ×ø±êÊÇ£¨
| 15 |
| 8 |
| 3 |
| 2 |
¢ÚAP=PMʱ£¬[3-£¨3-x£©]2+(0-
| 4 |
| 3 |
| 4 |
| 3 |
½âµÃ£ºx1=1£¬x2=3£¨ÉáÈ¥£©£¬
¡à3-x=2£¬
| 4 |
| 3 |
| 4 |
| 3 |
¡àPµÄ×ø±êÊÇ£¨2£¬
| 2 |
| 3 |
¢ÛMP=MAʱ£¬[£¨3-x£©-x]2+(
| 4 |
| 3 |
½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=
| 54 |
| 43 |
¡à3-x=
| 75 |
| 43 |
| 4 |
| 3 |
| 72 |
| 43 |
¡àPµÄ×ø±êÊÇ£¨
| 75 |
| 43 |
| 72 |
| 43 |
¼´PµãµÄ×ø±ê·Ö±ðΪ
P1£¨2£¬
| 4 |
| 3 |
| 15 |
| 8 |
| 3 |
| 2 |
| 75 |
| 43 |
| 72 |
| 43 |
´ð£º¡÷PMAÄܳÉΪµÈÑüÈý½ÇÐΣ¬´ËʱPµãµÄ×ø±ê·Ö±ðΪ
P1£¨2£¬
| 4 |
| 3 |
| 15 |
| 8 |
| 3 |
| 2 |
| 75 |
| 43 |
| 72 |
| 43 |
µãÆÀ£º±¾ÌâÊôÓÚ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄÐÔÖʺÍ×îÖµÇ󷨣¬Í¬Ê±»¹¿¼²éÁËÈý½ÇÐεÄÏà¹ØÖªÊ¶£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿