题目内容
下列图形中,不是轴对称图形的是( )
A. B. C. D.
下列去括号中正确的( )
A. x+(3y+2)=x+3y﹣2 B. a2﹣(3a2﹣2a+1)=a2﹣3a2﹣2a+1
C. y2+(﹣2y﹣1)=y2﹣2y﹣1 D. m3﹣(2m2﹣4m﹣1)=m3﹣2m2+4m﹣1
在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,则AC长为( )
A.4 B.2 C.1 D.
如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高, 已知BC=5,BD=4,则AD的长度=______.
如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )
如图,在直角坐标系中,点的坐标为, ,且.
(1)求经过三点的抛物线的解析式.
(2)在(1)中抛物线的对称轴上是否存在点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)若点为抛物线上一点,点为对称轴上一点,是否存在点使得构成的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
如图,在中, , ,将绕点顺时针旋转,得到,连接,交于点,则与的周长之和为____ .
如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.
(1)求抛物线的解析式;
(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.
(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.