ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Çó·´±ÈÀýµÄ½âÎöʽ£»
£¨2£©DÊDZßBCÉÏÒ»µã£¬¹ýµãD×÷DE¡ÍBC½»·´±ÈÀýµÄͼÏóÓÚµãE£¬ÒÔBD¡¢DEΪÏàÁÚÁ½±ß×÷¾ØÐÎDEFB£®ÈôBD£¼DE£¬ÇÒ¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£®
¢ÙÁ¬½áBE¡¢BO£¬Ôò¡Ï0BE=90¡ã£»
¢ÚÇó¾ØÐÎDEFBµÄÃæ»ý£®
·ÖÎö £¨1£©°ÑµãB£¨3£¬2£©´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¬Çó³ökµÄÖµ¼´¿É£»
£¨2£©¢ÙÓɾØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬µÃ³ö¡÷DBE¡×¡÷COB£¬µÃ³ö¶ÔÓ¦½ÇÏàµÈ¡ÏDBE=¡ÏCOB£¬µÃ³ö¡ÏDBE+¡ÏCBO=90¡ã¼´¿É£»
¢ÚÓɾØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬µÃ³öDE£ºDB=OA£ºAB=3£º2£¬ÉèDB=2k£¬ÔòDE=3k£¬µÃ³öµãEµÄ×ø±ê£¬´úÈë·´±ÈÀýº¯Êý½âÎöʽ£¬½â·½³ÌÇó³ökµÄÖµ£¬µÃ³öBD¡¢DEµÄ³¤£¬¼´¿ÉÇó³ö¾ØÐÎDEFBµÄÃæ»ý£®
½â´ð ½â£º£¨1£©°ÑµãB£¨3£¬2£©´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÃ£ºk=6£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪ£ºy=$\frac{6}{x}$£»
£¨2£©¢Ù¡ßËıßÐÎOABCÊǾØÐΣ¬
¡à¡ÏOCB=90¡ã£¬
¡à¡ÏCOB+¡ÏCBO=90¡ã£¬
¡ß¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬BD£¼DE£¬
¡à¡÷DBE¡×¡÷COB£¬
¡à¡ÏDBE=¡ÏCOB£¬
¡à¡ÏDBE+¡ÏCBO=90¡ã£¬
¼´¡ÏOBE=90¡ã£»
¢Ú¡ß¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬
¡àDE£ºDB=OA£ºAB=3£º2£¬
ÉèDB=2k£¬ÔòDE=3k£¬CD=3-2k£¬AF=AB+DE=2+3k£¬
¡àµãEµÄ×ø±êΪ£º£¨3-2k£¬2+3k£©£¬
°ÑµãE£¨3-2k£¬2+3k£©´úÈëy=$\frac{6}{x}$µÃ£º
£¨3-2k£©£¨2+3k£©=6£¬
½âµÃ£ºk=$\frac{5}{6}$£¬
¡àBD=2k=$\frac{5}{3}$£¬DE=3k=$\frac{5}{2}$£¬
¡à¾ØÐÎDEFBµÄÃæ»ý=BD•DE=$\frac{5}{3}$¡Á$\frac{5}{2}$=$\frac{25}{6}$£®
µãÆÀ ±¾ÌâÊÇ·´±ÈÀýº¯Êý×ÛºÏÌâÄ¿£¬¿¼²éÁË·´±ÈÀýº¯Êý½âÎöʽµÄÇ󷨡¢×ø±êÓëͼÐÎÌØÕ÷¡¢ÏàËÆ¶à±ßÐΡ¢ÏàËÆÈý½ÇÐεÄÐÔÖÊ¡¢¾ØÐÎÃæ»ýµÄ¼ÆËãµÈ֪ʶ£»±¾Ìâ×ÛºÏÐÔÇ¿£¬ÓÐÒ»¶¨ÄѶȣ¬ÊìÁ·ÕÆÎÕ¾ØÐεÄÐÔÖÊ£¬È·¶¨·´±ÈÀýº¯Êý½âÎöʽÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®
| A£® | -1£¼x¡Ü-$\frac{1}{2}$ | B£® | x¡Ü$\frac{1}{2}$ | C£® | x£¼-1 | D£® | ÎÞ½â |
| A£® | $\left\{\begin{array}{l}{x¡Ü-2}\\{x£¾4}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x£¼-2}\\{x¡Ý4}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x£¾-2}\\{x¡Ü4}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x¡Ý-2}\\{x£¼4}\end{array}\right.$ |