题目内容
已知,一轮船以16海里/时的速度8:00从港口A出发向正北方向航行,另一轮船1小时后以24海里/时的速度同时从港口A出发向正东方向航行,10:00的时候两船相距( )
| A、25海里 | B、30海里 |
| C、35海里 | D、40海里 |
考点:勾股定理的应用
专题:
分析:首先根据速度和时间计算出从港口A出发向正北方向航行的轮船行驶的路程和从港口A出发向正东方向航行的轮船行驶的路程,然后再根据勾股定理计算出两船之间的距离.
解答:解:由题意得:从港口A出发向正北方向航行的轮船行驶的路程为:16×2=32(海里),
从港口A出发向正东方向航行的轮船行驶的路程为:24×2=24(海里),
两船相距:
=40(海里).
故选:D.
从港口A出发向正东方向航行的轮船行驶的路程为:24×2=24(海里),
两船相距:
| 322+242 |
故选:D.
点评:此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.
练习册系列答案
相关题目
甲队有32人,乙队有28人,现从乙队抽x人到甲队,使甲队人数是乙队人数的2倍,据题意可列方程为( )
| A、32+x=56 |
| B、32=2(28-x) |
| C、32+x=2(28-x) |
| D、2(32+x)=28-x |
下列多项式中,不能用公式法因式分解的是( )
A、
| ||
| B、x2+2xy+y2 | ||
| C、-x2+y2 | ||
| D、x2+xy+y2 |
计算(π-1)0÷(
)-2×(-3)2的结果是( )
| 1 |
| 3 |
| A、1 | ||
| B、0 | ||
| C、81 | ||
D、
|