题目内容

10.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周长.

分析 (1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.
(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.

解答 (1)证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等边对等角).
∵D是BC的中点,
∴BD=CD.
在△BED和△CFD中,
$\left\{\begin{array}{l}{∠BED=∠CFD}\\{∠B=∠C}\\{BD=CD}\end{array}\right.$,
∴△BED≌△CFD(AAS).
∴DE=DF

(2)解:∵AB=AC,∠A=60°,
∴△ABC为等边三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE=$\frac{1}{2}$BD,
∵BE=2,
∴BD=4,
∴BC=2BD=8,
∴△ABC的周长为24.

点评 此题主要考查学生对等边三角形的判定与性质、全等三角形的判定与性质、直角三角形的性质等知识点的理解和掌握.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网