题目内容
按要求解一元二次方程:
(1)2x2﹣3x+1=0(配方法)
(2)x(x﹣2)+x﹣2=0(因式分解法)
有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片 张.
解方程(组):
(1)解关于x的方程:ax+b2=bx+a2
(2).
(3).
(4).
(5)
(6).
已知函数,如果函数值y>5,那么相应的自变量x的取值范围是 .
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是 .
若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为( )
A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0
如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于 度.
如图,△ABC中,CD是边AB上的高,且=.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.