题目内容

9.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A?B?C?D?=(  )
A.1:9B.1:3C.1:4D.1:5

分析 四边形ABCD与四边形A′B′C′D′位似,四边形ABCD∽四边形A′B′C′D′,可知AD∥A′D′,△OAD∽△OA′D′,求出相似比从而求得S四边形ABCD:S四边形A?B?C?D?的值.

解答 解:∵四边形ABCD与四边形A′B′C′D′位似,
∴四边形ABCD∽四边形A′B′C′D′,
∴AD∥A′D′,
∴△OAD∽△OA′D′,
∴OA:O′A′=AD:A′D′=1:3,
∴S四边形ABCD:S四边形A?B?C?D?=1:9.
故选:A.

点评 本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网