题目内容
在矩形ABCD中,AB=3,AD=4,点O为边AD的中点,如果以点O为圆心,r为半径的圆与对角线BD所在的直线相切,那么r的值是 .
.如图,在某海岛的观察所A测得船只B的俯角是300 ,若观察所的标高(当水位是0米时的高度)是53米,当时的水位是+3米,则观察所A和船只B的水平距离是( )米。
A 50 B 50 C 53 D 53
老师在黑板上写了一个正确的演算过程,随后用手掌捂住了的多项式,形式如下:
﹣(a+2b)2=a2﹣4b2
(1)求所捂的多项式;
(2)当a=﹣1,b=时求所捂的多项式的值.
如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )
A. B. C. D.
某山山脚的M处到山顶的N处有一条长为600米的登山路,小李沿此路从M走到N,停留后再原路返回,期间小李离开M处的路程y米与离开M处的时间x分(x>0)之间的函数关系如图中折线OABCD所示.
(1)求上山时y关于x的函数解析式,并写出定义域:
(2)已知小李下山的时间共26分钟,其中前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,试求点C的纵坐标.
在分别写有数字-1,0,2,3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为 .
某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是( )
成绩(环)
6
7
8
9
10
次数
1
4
2
3
(A)2 (B)3 (C)8 (D)9
先化简,再求值:,其中。
如图1,平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为M.D在y轴上,OB=OD=3,OA=5.
(1)试用含a的式子表示点M的坐标;
(2)若S△ABC﹣S△ACM=;
①求抛物线y=ax2+bx+c的解析式;
②如图2,将△BOD绕点O沿逆时针方向旋转α(0°<α≤180°)得到△B′OD′,直线AD与BC相交于点Q,求点Q纵坐标的取值范围.