题目内容

如图,AC⊥BC,CD⊥AB,∠A的余角有
 
个.
考点:余角和补角
专题:
分析:根据垂直定义得出∠ACB=∠ADC=∠BDC=90°,根据三角形内角和定理求出∠A+∠B=90°,∠A+∠ACD=90°,即可得出答案.
解答:解:∵AC⊥BC,CD⊥AB,
∴∠ACB=∠ADC=∠BDC=90°,
∴∠A+∠B=90°,∠A+∠ACD=90°,
即∠A的余角是∠B和∠ACD,共2个,
故答案为:2.
点评:本题考查了三角形内角和定理,余角,补角的应用,关键是求出∠A+∠B=90°,∠A+∠ACD=90°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网