题目内容

1.用适当的方法解下列方程
(1)$\left\{\begin{array}{l}{2x-3y=6}\\{x=4+2y}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+3y=0}\\{3x+y=10}\end{array}\right.$
(3)$\left\{\begin{array}{l}{4x-3y=5}\\{2x-y=2}\end{array}\right.$
(4)$\left\{\begin{array}{l}{\frac{x}{3}-\frac{y}{2}=1}\\{3x+2y=22}\end{array}\right.$.

分析 (1)先把②代入①求出y的值,再把y的值代入②求出x的值即可;
(2)先用加减消元法求出y的值,再用代入消元法求出x的值即可;
(3)先用加减消元法求出y的值,再用代入消元法求出x的值即可;
(4)先把方程组中的方程化为不含分母的方程,再用加减消元法或代入消元法求解即可.

解答 解:(1)$\left\{\begin{array}{l}2x-3y=6①\\ x=4+2y②\end{array}\right.$,把②代入①得,2(4+2y)-3y=6,解得y=-2,把y=-2代入②得,x=4-4=0,
故此方程组的解为$\left\{\begin{array}{l}x=0\\ y=-2\end{array}\right.$;

(2)$\left\{\begin{array}{l}3x+3y=0①\\ 3x+y=10②\end{array}\right.$,①-②得,2y=-10,解得y=-5,把y=-5代入②得,3x-5=10,解得x=5,
故方程组的解为$\left\{\begin{array}{l}x=5\\ y=-5\end{array}\right.$;

(3)$\left\{\begin{array}{l}4x-3y=5①\\ 2x-y=2②\end{array}\right.$,①-②×2得,-y=1,解得y=-1,把y=-1代入②得,2x+1=2,解得x=$\frac{1}{2}$,
故方程组的解为$\left\{\begin{array}{l}x=\frac{1}{2}\\ y=-1\end{array}\right.$;

(4)原方程组可化为$\left\{\begin{array}{l}2x-3y=6①\\ 3x+2y=22②\end{array}\right.$,①×3-②×2得,-13y=-26,解得y=2,把y=2代入①得,2x-6=6,解得x=6,
故此方程组的解为$\left\{\begin{array}{l}x=6\\ y=2\end{array}\right.$.

点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网