题目内容
已知圆锥的底面半径是3,母线长为5,则圆锥的侧面积为 .
把方程x2-12x+33=0化成(x+m)2=n的形式,则m、n的值是( )
A.6,3 B.-6,-3 C.-6,3 D.6,-3
如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF= .
请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求
(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?
已知抛物线经过点A(4,0)。设点C(1,-3),请在抛物线的对称轴上确定一点D,使得的值最大,则D点的坐标为 .
若二次函数.当≤l时,随的增大而减小,则的取值范围是
A.=l B.>l C.≥l D.≤l
如果2是方程x2﹣c=0的一个根,那么c的值是
A.4 B.﹣4 C.2 D.-2
当 时,二次根式有意义.
为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:
(1)校团委随机调查了多少学生?请你补全条形统计图;
(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?
(3)四川地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?