题目内容
如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
C 【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误; 已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA, 再由∠BCE=∠BDA,∠BCE=∠BCD+∠D...已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:
①如果添加条件“AB=AC”,那么△ABC是等边三角形;
②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;
③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.
上述说法中,正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为
![]()
A. 40° B. 36° C. 30° D. 25°
查看答案如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案 试题属性- 题型:单选题
- 难度:困难
x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为( )
A. 0 B. ﹣1 C. ﹣2 D. 2
D 【解析】根据整式的加减法,去括号合并同类项可得x2+ax﹣y﹣(bx2﹣x+9y+3)= x2+ax﹣y﹣bx2+x-9y-3=(1-b)x2+(a+1)x+(-1-9)y-3,由于值与x的值无关,可得1-b=0,a+1=0,解得a=-1,b=1,因此可求-a+b=2. 故选:D.一个多项式与x2﹣3x+2的和是3x﹣1,则这个多项式为( )
A. ﹣x2+6x+1 B. ﹣x2+1 C. ﹣x2+6x﹣3 D. ﹣x2﹣6x+1
查看答案下列运算正确的是( )
A. ﹣a2b﹣2a2b=﹣3a2b B. 2a﹣a=2a
C. 3a2+2a2=5a4 D. 2a+b=2ab
查看答案多项式
的各项分别是 ( )
A、
B、
C、
D、![]()
下列式子:x2+2,
,
,
,﹣5x,0中,整式的个数有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为( )
A. 0.21×108 B. 2.1×106 C. 2.1×107 D. 21×106
查看答案 试题属性- 题型:单选题
- 难度:困难
如图
,在
的正方形方格中,
的顶点都在边长为
的小正方形的顶点.
(
)填空:
__________,
__________
;
(
)请在图
中的两个
的正方形方格中各画一个和
相似但不全等的格点三角形.
![]()
![]()
如图,在正方形
中,
为对角线
,
的交点,经过点
和点
作⊙
,分别交
,
于点
,
.已知正方形边长为
,⊙
的半径为
,则
的值为__________.
![]()
如图,抛物线
交
轴于点
,
,交
轴于点
,在
轴上方的抛物线上有两点
,
,它们关于
轴对称,点
,
在
轴左侧,
于点
,
于点
,四边形
与四边形
的面积分别为
和
,则
与
的面积之和为__________.
![]()
如图,已知
,
,
,
是⊙
上的四个点,
,
交
于点
,连接
,
.若
,
,则
__________.
![]()
如图,点
,
,
在⊙
上,
,则
等于__________度.
![]()
已知点
,
在二次函数
的图象上,若
,则
__________
.(填“
”“
”“
”)
- 题型:解答题
- 难度:简单
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
![]()
如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于直线m(直线m上各点的横坐标都为3)的对称点.
(1)在图中标出点A,B,C的位置并求出点C的坐标;
(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.
![]()
将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.
![]()
如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.
![]()
如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.
![]()
- 题型:解答题
- 难度:困难
如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是_________.
![]()
如图,在△ABC中,点D在BC上且AB=AD,AC=AE,∠BAD=∠CAE,DE=12,CD=4,则BD=_________.
![]()
等腰三角形的一个内角为80°,则顶角的度数是_________.
查看答案如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D=________.
![]()
如图,要测量池塘两端A,B的距离,可先在平地上取一个可以直接到达A,B两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是____________.
![]()
如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案 试题属性- 题型:填空题
- 难度:中等
在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
A 【解析】在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是(1,2). 故选A.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
![]()
A. 15 B. 30 C. 45 D. 60
查看答案下列条件中,不能判定两个直角三角形全等的是( )
A. 两直角边对应相等 B. 斜边和一条直角边对应相等
C. 两锐角对应相等 D. 一个锐角和斜边对应相等
查看答案一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( )
A. 7 B. 8 C. 9 D. 10
查看答案一副三角板如图叠放在一起,则图中∠α的度数为( )
![]()
A. 35° B. 30° C. 25° D. 15°
查看答案如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要( )
![]()
A. AB=CD B. EC=BF C. ∠A=∠D D. AB=BC
查看答案 试题属性- 题型:单选题
- 难度:简单
三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
C 【解析】根据三角形的三边关系可得5-3<c<5+3,即2<c<8,因c的值为奇数,所以c为3、5、7,即可得由a,b,c为边可组成三角形的个数为3个,故选B.在下列四个交通标志图中,是轴对称图形的是( )
A.
B.
C.
D. ![]()
已知实数
,
满足:
,且
,求
的值.
已知
与
互为相反数,求
的平方根.
阅读下面的信息,回答问题:
在数轴上,我们把到两个点距离相等的点,叫做这两个点的“中点”,例如:
①表示和![]()
的点到表示![]()
的点距离都为![]()
,所以它们“中点”表示的数是![]()
.![]()
②表示和![]()
的点到表示![]()
的点距离都为![]()
,所以它们的“中点”表示的数是![]()
.![]()
![]()
()表示![]()
和![]()
的点的“中点”表示的数是__________.![]()
()若“中点”表示的数是![]()
,其中一个点表示的数是![]()
,求另一个点表示的数.![]()
已知实数
,
,
满足:
,
,
,且
.
(
)在数轴上标出表示
,
的点的大致位置.
(
)化简
.
![]()
- 题型:单选题
- 难度:中等