题目内容
如图
,在
的正方形方格中,
的顶点都在边长为
的小正方形的顶点.
(
)填空:
__________,
__________
;
(
)请在图
中的两个
的正方形方格中各画一个和
相似但不全等的格点三角形.
![]()
![]()
如图,在正方形
中,
为对角线
,
的交点,经过点
和点
作⊙
,分别交
,
于点
,
.已知正方形边长为
,⊙
的半径为
,则
的值为__________.
![]()
如图,抛物线
交
轴于点
,
,交
轴于点
,在
轴上方的抛物线上有两点
,
,它们关于
轴对称,点
,
在
轴左侧,
于点
,
于点
,四边形
与四边形
的面积分别为
和
,则
与
的面积之和为__________.
![]()
如图,已知
,
,
,
是⊙
上的四个点,
,
交
于点
,连接
,
.若
,
,则
__________.
![]()
如图,点
,
,
在⊙
上,
,则
等于__________度.
![]()
已知点
,
在二次函数
的图象上,若
,则
__________
.(填“
”“
”“
”)
- 题型:解答题
- 难度:简单
把下列各数填入相应的大括号内:
,
,﹣0.01,
,7,1,﹣(﹣4),+(﹣1)
正数集合{ …}
负数集合{ …}
非负整数集合{ …}
分数集合{ …}.
答案见解析. 【解析】试题分析:根据有理数的分类,结合正数、负数、非负整数、分数的特点分类即可. 试题解析:正数集合{, ,7,1,﹣(﹣4)…} 负数集合{,﹣0.01, +(﹣1)…} 非负整数集合{, ,7,1,﹣(﹣4)…} 分数集合{, ,﹣0.01, …}.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是_____cm.(用m或n的式子表示).
![]()
单项式﹣2xy5的系数是m,次数是n,则m﹣n=_____.
查看答案一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是_____.
查看答案在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是_____.
查看答案若a、b互为倒数,则(﹣ab)2017=_____.
查看答案 试题属性- 题型:解答题
- 难度:中等
某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会.抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1,2,3,…,100共100个数字,抽到末位数是5的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99的可获100元购物券.某顾客购物用了130元,他获得购物券的概率是多少?他获得20元、100元、200元购物券的概率分别是多少?
P(获得购物券)= ,P(获得20元购物券)= ,P(获得100元购物券)= ,P(获得200元购物券)= 【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 试题解析:顾客的消费额在100元到200元之间,因此可以获得一次抽奖的机会. 在抽奖箱内,写有66,88,99的牌子各有1个,末位数字是5的牌...在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.
![]()
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.
![]()
(1)第5个“广”字中的棋子个数是 .
(2)第n个“广”字需要多少枚棋子?
查看答案如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案 试题属性- 题型:解答题
- 难度:中等
一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误的是( )
![]()
A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km
C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h
C 【解析】试题分析:分析图象可知 A、4-3=1,摩托车比汽车晚到1h,故选项正确; B、因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,故选项正确; C、摩托车的速度为(180-20)÷4=40km/h,故选项错误; D、汽车的速度为180÷3=60km/h,故选项正确. 故选C.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )
A.
B.
C.
D.![]()
下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案下列说法正确的是( )
A. “任意画出一个等边三角形,它是轴对称图形”是随机事件
B. 某种彩票的中奖率为
,说明每买1 000张彩票,一定有一张中奖
C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为![]()
D. “概率为1的事件”是必然事件
查看答案如图所示,AB∥CD,BC平分∠ABD,若∠C=40°,则∠D的度数为 ( )
![]()
A. 90° B. 100° C. 110° D. 120°
查看答案下列计算正确的是( )
A. 4x3•2x2=8x6 B. a4+a3=a7 C. (﹣x2)5=﹣x10 D. (a﹣b)2=a2﹣b2
查看答案 试题属性- 题型:单选题
- 难度:简单
已知点
,
在二次函数
的图象上,若
,则
__________
.(填“
”“
”“
”)
二次函数
图象的顶点坐标是__________.
如图,已知⊙
的半径
垂直直线
于点
,点
从点
出发,沿直线
向右运动,同时点
从点
出发沿着圆周按逆时针以相同的速度运动,当点
返回到点
时,点
也停止运动.连接
,
,则阴影部分面积
,
的关系是( ).
![]()
A.
B. 先
,再
,最后![]()
C.
D. 先
,再
,再后![]()
二次函数
的图象,如图所示,有下列
个结论:①
;②
;③
;④
;⑤
中,则其中正确的有( ).
![]()
A. ①③④ B. ②④⑤ C. ①②④ D. ①③⑤
查看答案抛物线
的部分图象如图所示,若
,则
的取值范围是( ).
![]()
A.
B.
C.
或
D.
或![]()
如图,已知
是⊙
的直径,过点
的弦
平行于半径
,若
,则
等于( ).
![]()
A.
B.
C.
D. ![]()
- 题型:填空题
- 难度:中等
如图,已知
的半径
,
,则
所对的弧
的长为( )
![]()
A.
B.
C.
D. ![]()
如图,
,
,
交于
,
,
,
,则
长为( ).
![]()
A.
B.
C.
D. ![]()
将抛物线
先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ).
A.
B.
C.
D. ![]()
若二次函数
的图象经过点
,则
的值为( ).
A.
B.
C.
D. ![]()
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
- 题型:单选题
- 难度:简单
如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
C 【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误; 已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA, 再由∠BCE=∠BDA,∠BCE=∠BCD+∠D...已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:
①如果添加条件“AB=AC”,那么△ABC是等边三角形;
②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;
③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.
上述说法中,正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为
![]()
A. 40° B. 36° C. 30° D. 25°
查看答案如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案 试题属性- 题型:单选题
- 难度:困难