题目内容
【题目】一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°.![]()
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m).
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
【答案】
(1)证明:CD与FG交于点M,
∵∠OCD=25°,四边形ABCD是矩形,∠FGB=65°.
∴∠FMC=65°,
∴∠MFC=90°,
∴GF⊥CO
(2)解:作GN⊥EH于点N,
![]()
∵FG∥EH,GF⊥CO;
∴四边形ENGF是矩形;
∴EF=NG,
∵∠FGB=∠NHG=65°,
∴sin65°=
=
≈0.91,
∴EF=NG=2.366m≈2.4m.
【解析】(1)根据∠OCD=25°,四边形ABCD是矩形,∠FGB=65°,得出∠FMC=65°,得∠MFC=90°,即证得GF⊥OC;
(2)根据矩形的判定得出EF=NG,再利用解直角三角形的知识得出NG的长,即可得到EF的长.
【题目】为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.
采购数量(件) | 2 | 4 | 6 | … |
A产品单价(元) | 1460 | 1420 | 1380 | … |
B产品单价(元) | 1280 | 1260 | 1240 | … |
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的
,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.