题目内容
如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于( )
A.65° B.50° C.60° D.57.5°
对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中较大的数,如max{2,4}=4.按这个规定,方程max{x,-x}=的解为( )
A. 1- B. 2-
C. 1-或1+ D. 1+或-1
水平放置的容器内原有210 mm高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4 mm,每放入一个小球水面就上升3 mm,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y(mm).
(1)若只放入大球,且个数为x大,求y关于x大的函数表达式(不必写出x大的取值范围).
(2)若放入6个大球后,开始放入小球,且小球个数为x小.
①求y关于x小的函数表达式(不必写出x小的取值范围).
②若限定水面高不超过260 mm,则最多能放入几个小球?
如图,在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是 .
如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )
A. ② B. ①②③ C. ①②④ D. ①②③④
某日通过某公路收费站的汽车中共有3000辆次缴了通行费,其中大车每辆次缴通行费10元,小车每辆次缴通行费5元.
(1)设这一天小车缴通行费的辆次为x,总的通行费收入为y元,求y关于x的函数表达式.
(2)若估计缴费的3000辆次汽车中大车不少于20%且不多于40%,试求该收费站这一天收费总数的范围.
已知z=m+y,m是常数,y是x的正比例函数.当x=2时,z=1;当x=3时,z=-1,求z与x之间的函数表达式.
若代数式是完全平方式,则m的值是________
一元二次方程其一般式的二次项系数、一次项系数、常数项分别为( )
A. B. C. D.