题目内容
【题目】如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.
(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)
(2)若AP=2,CD=8,求⊙O的半径.
![]()
【答案】(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为5.
【解析】
(1)过P点作AB的垂线即可,作图依据是垂径定理的推论.
(2)设⊙O的半径为r,在Rt△OPD中,利用勾股定理构建方程即可解决问题.
(1)过P点作AB的垂线交圆与C、D两点, CD就是所求的弦,如图.
依据:平分弦(非直径)的直径垂直于弦;
(2)如图,连接OD,
![]()
∵OA⊥CD于点P,AB是⊙O的直径,
∴∠OPD=90°,PD=
CD,
∵CD=8,
∴PD=4.
设⊙O的半径为r,则OD=r,OP=OA﹣AP=r﹣2,
在Rt△ODP中,∠OPD=90°,
∴OD2=OP2+PD2,
即r2=(r﹣2)2+42,
解得r=5,
即⊙O的半径为5.
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
![]()
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,回答下列问题:
(1)补全数学成绩频数分布直方图;
(2)写出表中m、n的值;
(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).