ÌâÄ¿ÄÚÈÝ

20£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=4£¬AD=3£¬¡ÏDABµÄ½Çƽ·ÖÏß½»±ßCDÓÚµãE£®µãPÔÚÉäÏßAEÉÏÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÉäÏßAE·½Ïò´ÓµãA¿ªÊ¼Ô˶¯£¬¹ýµãP×÷PQ¡ÍABÓÚµãQ£¬ÒÔPQΪ±ßÏòÓÒ×÷ƽÐÐËıßÐÎPQMN£¬µãNÔÚÉäÏßAEÉÏ£¬ÇÒAP=PN£®ÉèPµãÔ˶¯Ê±¼äΪtÃ룮
£¨1£©µ±µãMÂäÔÚBCÉÏʱ£¬ÇóÏß¶ÎPQµÄ³¤£®
£¨2£©µ±µãCÂäÔÚÆ½ÐÐËıßÐÎPQMNµÄ¶Ô½ÇÏßÉÏʱ£¬ÇótµÄÖµ£®
£¨3£©ÉèÆ½ÐÐËıßÐÎPQMNÓë¾ØÐÎABCDÖØºÏ²¿·ÖÃæ»ýΪS£¬µ±µãPÔÚÏß¶ÎAEÉÏÔ˶¯Ê±£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£®
£¨4£©Ö±½Óд³öÔÚµãP¡¢QÔ˶¯µÄ¹ý³ÌÖУ¬Õû¸öͼÐÎÖÐÐγɵÄÈý½ÇÐδæÔÚÈ«µÈÈý½ÇÐÎʱtµÄÖµ£¨²»Ìí¼ÓÈκθ¨ÖúÏߣ©£®

·ÖÎö £¨1£©Èçͼ1ÖУ¬µ±µãMÔÚBCÉÏʱ£¬Ö»ÒªÖ¤Ã÷AQ=QB¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ùµ±µãCÂäÔÚ¶Ô½ÇÏßPMÉÏʱ£¬µãPÓëµãEÖØºÏ£¬Èçͼ2ÖУ¬´Ëʱ£¬AP=3$\sqrt{2}$£¬Óɴ˽â¾öÎÊÌ⣮¢Úµ±µãCÂäÔÚ¶Ô½ÇÏßNQÉÏʱ£¬Èçͼ3ÖУ¬ÑÓ³¤NM½»ABµÄÑÓ³¤ÏßÓÚG£¬Ö»ÒªÖ¤Ã÷BC=2QB¼´¿ÉÁгö·½³Ì½â¾öÎÊÌ⣮
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ4ÖУ¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÆ½ÐÐËıßÐÎPQMN£®¢ÚÈçͼ5ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQMGE£®¢ÛÈçͼ6ÖУ¬µ±2£¼t¡Ü3ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQGCE£¬ÑÓ³¤QP½»CDÓÚK£®·Ö±ðÇó½â¼´¿É£®
£¨4£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¼´¿É£©¢ÙÈçͼ7ÖУ¬µ±µãQÊÇABÖеãʱ£¬¡÷APQ¡Õ¡÷QMB£®¢ÚÈçͼ8ÖУ¬µ±µãPÓëµãEÖØºÏʱ£¬¡÷APQ¡Õ¡÷AED£®¢ÛÈçͼ9ÖУ¬µ±¡÷PEK¡Õ¡÷QGBʱ£¬·Ö±ðÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬

µ±µãMÔÚBCÉÏʱ£¬¡ßPQ¡ÎBN£¬AP=PN£¬
¡àAQ=QB£¬¡ßAB=4£¬
¡àAQ=2£¬AP=$\sqrt{2}$AQ=2$\sqrt{2}$£®

£¨2£©¢Ùµ±µãCÂäÔÚ¶Ô½ÇÏßPMÉÏʱ£¬µãPÓëµãEÖØºÏ£¬Èçͼ2ÖУ¬

´Ëʱ£¬AP=3$\sqrt{2}$£¬
¡àt=$\frac{3\sqrt{2}}{\sqrt{2}}$=3£¬
¢Úµ±µãCÂäÔÚ¶Ô½ÇÏßNQÉÏʱ£¬Èçͼ3ÖУ¬ÑÓ³¤NM½»ABµÄÑÓ³¤ÏßÓÚG£®

¡ßBC¡ÎNG£¬
¡à$\frac{BC}{GN}$=$\frac{QB}{QG}$£¬
¡à$\frac{QB}{BC}$=$\frac{QG}{GN}$=$\frac{1}{2}$£¬
¡à3=2£¨4-t£©£¬
¡àt=$\frac{5}{2}$£¬
×ÛÉÏËùÊöµ±t=$\frac{5}{2}$»ò3sʱ£¬µãCÔÚÐÐËıßÐÎPQMNµÄ¶Ô½ÇÏßÉÏ£®

£¨3£©¢ÙÈçͼ4ÖУ¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÆ½ÐÐËıßÐÎPQMN£¬S=t2£¬

¢ÚÈçͼ5ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQMGE£¬

S=SƽÐÐËıßÐÎPQMN-S¡÷NGE=t2-$\frac{1}{2}$[$\frac{2\sqrt{2}t-3\sqrt{2}}{\sqrt{2}}$]2=-t2+6t-$\frac{9}{2}$£®
¢ÛÈçͼ6ÖУ¬µ±2£¼t¡Ü3ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQGCE£¬ÑÓ³¤QP½»CDÓÚK£®

S=S¾ØÐÎQBCK-S¡÷KPE-S¡÷QBG=3£¨4-t£©-$\frac{1}{2}$£¨$\frac{3\sqrt{2}-2\sqrt{2}t}{\sqrt{2}}$£©2-$\frac{1}{2}$£¨4-t£©2=-t2+4t-$\frac{1}{2}$£¬
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{{t}^{2}}&{£¨0£¼t¡Ü\frac{3}{2}£©}\\{-{t}^{2}+6t-\frac{9}{2}}&{£¨\frac{3}{2}£¼t¡Ü2£©}\\{-{t}^{2}+4t-\frac{1}{2}}&{£¨2£¼t¡Ü3£©}\end{array}\right.$£®


£¨4£©¢ÙÈçͼ7ÖУ¬µ±µãQÊÇABÖеãʱ£¬¡÷APQ¡Õ¡÷QMB£¬´Ëʱt=2£®

¢ÚÈçͼ8ÖУ¬µ±µãPÓëµãEÖØºÏʱ£¬¡÷APQ¡Õ¡÷AED£¬´Ëʱt=3£®

¢ÛÈçͼ9ÖУ¬µ±¡÷PEK¡Õ¡÷QGBʱ£¬ÓÉEK=BQµÃµ½£¬$\frac{\sqrt{2}t-3\sqrt{2}}{\sqrt{2}}$=4-t£¬½âµÃt=$\frac{7}{2}$£¬

×ÛÉÏËùÊöt=2s»ò3s»ò$\frac{7}{2}$sʱ£¬Õû¸öͼÐÎÖÐÐγɵÄÈý½ÇÐδæÔÚÈ«µÈÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Æ½ÒƱ任¡¢È«µÈÈý½ÇÐεÄÅж¨µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á·ÖÀàÌÖÂÛ£¬Ñ§»á»­ºÃͼÐΣ¬Ñ§»áÀûÓ÷ָÇóÃæ»ý£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø