题目内容

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,分别以三边为直径向上作三个半圆.
(1)AB=
 

(2)图中阴影部分面积=
 
考点:勾股定理
专题:
分析:(1)直接根据勾股定理求出AB的长;
(2)根据S阴影=以AC为直径的扇形的面积+以BC为直径的扇形面积-以AB为直径的扇形面积+△ABC的面积即可得出结论.
解答:解:(1)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=
AC2+BC2
=
62+82
=10.
故答案为:10;

(2)∵S阴影=
1
2
π(
6
2
2+
1
2
π(
8
2
2-
1
2
π(
10
2
2+
1
2
×6×8
=
9
2
π+8π-
25
2
π+24
=24.
故答案为:24.
点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网