题目内容
已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.
解答: (1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,
∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,
∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;
(2)解:根据题意,得
12﹣1×(m+2)+(2m﹣1)=0,
解得,m=2,
则方程的另一根为:m+2﹣1=2+1=3;
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:
;
该直角三角形的周长为1+3+
=4+
;
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2
;则该直角三角形的周长为1+3+2
=4+2
.
练习册系列答案
相关题目