题目内容


如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.

 


解答: 证明:(1)∵四边形ABDE是平行四边形(已知),

∴AB∥DE,AB=DE(平行四边形的对边平行且相等);

∴∠B=∠EDC(两直线平行,同位角相等);

又∵AB=AC(已知),

∴AC=DE(等量代换),∠B=∠ACB(等边对等角),

∴∠EDC=∠ACD(等量代换);

∵在△ADC和△ECD中,

∴△ADC≌△ECD(SAS);

(2)∵四边形ABDE是平行四边形(已知),

∴BD∥AE,BD=AE(平行四边形的对边平行且相等),

∴AE∥CD;

又∵BD=CD,

∴AE=CD(等量代换),

∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);

在△ABC中,AB=AC,BD=CD,

∴AD⊥BC(等腰三角形的“三合一”性质),

∴∠ADC=90°,

∴▱ADCE是矩形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网