题目内容
【题目】已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE =∠ACD,BE、CD交于点G.
(1)求证:△AED∽△ABC;
(2)如果BE平分∠ABC,求证:DE=CE.
![]()
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题(1)先证△ABE∽△ACD,得出
,再利用∠A是公共角,即可求证;(2)在BC上截取BF=BD,连接EF,先证△BDE≌△BFE,得出DE=FE,∠BDE=∠BFE,再证EF=EC即可.
解:(1)∵∠ABE =∠ACD,且∠A是公共角,
∴△ABE∽△ACD.
∴
,即
,
又∵∠A是公共角,
∴△AED∽△ABC.
(2)在BC上截取BF=BD,连接EF,
在△BDE与△BFE中,BD=BF,∠DBE=∠FBE,BE=BE,
∴△BDE≌△BFE,
∴DE=FE,∠BDE=∠BFE,∴∠ADE=∠EFC,
∵△AED∽△ABC,∴∠ADE=∠ACB,
∴∠EFC=∠ACB,
∴EF=EC,
∴DE=CE.
练习册系列答案
相关题目