题目内容
如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE。
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是 的中点,⊙O的半径为1,求图中阴影部分的面积。
![]()
解(1)直线CD与⊙O相切。
证明:连结AC,OA=OC,
∠OAC=∠OCA,
AC平分∠DAB,∠DAC=∠OAC,
∠DAC=∠OCA,AD//OC,AD⊥CD,OC⊥CD,CD与⊙O相切。
(2)连结OE,, 点E是 的中点,
,∠DAC=∠ECA(相等的弧所对的圆周角相等),
∠DAC=∠OAC((1)中已证),∠ECA=∠OAC,CE//OA,AD//OC,
四边形AOCE是平行四边形,CE=OA,AE=OC, OA=OC=OE=1,
OC=OE=CE=OA=AE=1,四边形AOCE是菱形,△OCE是等边三角形,
∠OCE=60º,∠OCD=90º,∠DCE=∠OCD-∠OCE=90º-60º=30º,
AD⊥CD,在Rt△DCE中,ED=
CE =
,DC=cos30º•CE=
,
CE弧与CE弦所围成部分的面积 = AE弧与AE弦所围成部分的面积,
S阴影=S△DCE=
•ED•DC=
×
×
=
.
答:图中阴影部分的面积为
。
练习册系列答案
相关题目