题目内容
10.在△ABC中,AB=15,AC=20,AD⊥BC,垂足为D且AD=12,则BC=25或7.分析 由勾股定理求出BD和CD,分两种情况:①当△ABC不是钝角三角形时,BC=BD+CD=25;当△ABC是钝角三角形时,BC=CD=BD=7;即可得出结果.
解答 解:
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{1{5}^{2}-1{2}^{2}}$=9,
CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{2{0}^{2}-1{2}^{2}}$=16;
分两种情况:
①当△ABC不是钝角三角形时,
BC=BD+CD=9+16=25;![]()
当△ABC是钝角三角形时,
BC=CD=BD=16-9=7;
故答案为:25或7.
点评 本题考查了勾股定理;熟练掌握勾股定理,分两种情况讨论得出BC的长是解决问题的关键.
练习册系列答案
相关题目
18.用●表示实圆,用○表示空心圆,现有若干个实圆与空心圆按一定规律排列下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…问:前2011个圆中,有( )个空心圆.
| A. | 670 | B. | 668 | C. | 669 | D. | 671 |
15.以下判断正确的是( )
| A. | 单项式xy没有系数 | B. | -1是单项式 | ||
| C. | 23x2是五次单项式 | D. | $\frac{5}{a}$是单项式 |
20.已知x=1是方程2x2-3x-m=0的一个根,则m的值为( )
| A. | 1 | B. | 5 | C. | -1 | D. | -5 |