题目内容

17.如图,点E在正方形ABCD对角线AC上,且EC=2.5AE,直角三角形FEG的两直角边EF,EG分别交BC,CD于M,N.若正方形边长是a,则重叠部分四边形EMCN的面积为(  )
A.$\frac{25}{49}$a2B.$\frac{12}{25}$a2C.$\frac{7}{9}$a2D.$\frac{16}{25}$a2

分析 过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.

解答 解:过E作EP⊥BC于点P,EQ⊥CD于点Q,如图所示:
∵四边形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵△FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,
∴EP=EQ,四边形PCQE是正方形,
在△EPM和△EQN中,
$\left\{\begin{array}{l}{∠PEM=∠NEQ}&{\;}\\{EF=EQ}&{\;}\\{∠EPM=∠EQN}&{\;}\end{array}\right.$,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM
∴四边形EMCN的面积等于正方形PCQE的面积,
∵正方形ABCD的边长为a,
∴AC=$\sqrt{{a}^{2}+{a}^{2}}$=$\sqrt{2}$a,
∵EC=2.5AE,
∴EC=$\frac{5\sqrt{2}}{7}$a,
∴正方形PCQE的面积=$\frac{1}{2}$×($\frac{5\sqrt{2}}{7}$a)2=$\frac{25}{49}$a2
∴四边形EMCN的面积=$\frac{25}{49}$a2
故选:A.

点评 本题主要考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网