题目内容
如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为( )
A.3 B.12 C. D.7
已知关于x的方程x2﹣2(m+1)x+m2=0.
(1)当m取什么值时,原方程有实数根;
(2)对m选取最小正整数值时,求方程的根.
如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
A.cm B.cm C.cm D.4cm
如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
A.3cm B.4cm C.6cm D.8cm
在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为( )
A.10tan50° B.10cos50° C.10sin50° D.
问题探究:(1)已知:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE丄DH于点O,求证:AE=DH
类比探究:(2)已知:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,则线段EF与HG有什么数量关系,并说明理由;
拓展应用:(3)已知:如图3,在(2)问条件下,若HF∥GE,BE=EC=2,EO=2FO,求HG的长.
用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:矩形ABCD,
求作:菱形AECF,使点E,F分别在边BC,AD上.
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 .