题目内容
一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( )
A.30海里 B.40海里 C.50海里 D.60海里
将如图的Rt△ABC绕直角边AC旋转一周,所得几何体的主视图是( )
A. B. C. D.
如图, 分别是正方形各边的中点, 分别是四边形各边的中点, 分别是的中点.若图中阴影部分的面积是10,则的长是___________.
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.
在ABCD中,若∠A+∠C =140°,那么∠D =______________.