题目内容
用适当的方法解下列方程:
;
如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
如图,抛物线与轴交于点,与轴交于,两点(点在轴正半轴上),为等腰直角三角形,且面积为,现将抛物线沿方向平移,平移后的抛物线过点时,与轴的另一点为,其顶点为,对称轴与轴的交点为.
求、的值.
连接,试判断是否为等腰三角形,并说明理由.
现将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点,是否存在这样的点,使以点、、为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.
已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是【 】
A.第四象限 B.第三象限 C.第二象限 D.第一象限
某公司生产的商品市场指导价为每千克元,公司的实际销售价格可以浮动个百分点(即销售价格),经过市场调研发现,这种商品的日销售量(千克)与销售价格浮动的百分点之间的函数关系为.若该公司按浮动个百分点的价格出售,每件商品仍可获利.
求该公司生产销售每千克商品的成本为多少元?
当该公司的商品定价为多少元时,日销售利润为元?(说明:日销售利润(销售价格一成本)日销售量)
该公司决定每销售一千克商品就捐赠元利润给希望工程,公司通过销售记录发现,当价格浮动的百分点大于时,扣除捐赠后的日销售利润随的增大而减小,直接写出的取值范围.
已知,则的值为________.
与形状相同的抛物线解析式为( )
A. B. C. D.
如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.
方程的根为( )
A. B. C. , D. 以上都不对