ÌâÄ¿ÄÚÈÝ
ÒÑÖª£ºÖ±½ÇÈý½ÇÐÎAOBÖУ¬¡ÏAOB=90¡ã£¬OA=3ÀåÃ×£¬OB=4ÀåÃ×£®ÒÔOÎª×ø±êÔµãÈçͼ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£®ÉèP¡¢Q·Ö±ðΪAB±ß£¬OB±ßÉϵ͝µã£¬ËüÃÇͬʱ·Ö±ð´ÓµãA¡¢OÏòBµãÔÈËÙÔ˶¯£¬Òƶ¯µÄËٶȶ¼Îª1ÀåÃ×ÿÃ룮ÉèP¡¢Q£¨1£©Çó¡÷OPQµÄÃæ»ýSÓ루ÀåÃ×2£©ÓëtµÄº¯Êý¹ØÏµÊ½£»²¢Ö¸³öµ±tΪºÎֵʱSµÄ×î´óÖµÊǶàÉÙ£¿
£¨2£©µ±tΪºÎֵʱ£¬¡÷BPQºÍ¡÷AOBÏàËÆ£»
£¨3£©µ±tΪºÎֵʱ£¬¡÷OPQΪֱ½ÇÈý½ÇÐΣ»
£¨4£©¢ÙÊÔÖ¤Ã÷ÎÞÂÛtΪºÎÖµ£¬¡÷OPQ²»¿ÉÄÜΪÕýÈý½ÇÐΣ»
¢ÚÈôµãPµÄÒÆ¶¯ËٶȲ»±ä£¬ÊԸıäµãQµÄÔ˶¯ËÙ¶È£¬Ê¹¡÷OPQΪÕýÈý½ÇÐΣ¬Çó³öµãQµÄÔ˶¯ËٶȺʹËʱµÄtÖµ£®
·ÖÎö£º£¨1£©¿ÉÓÃt±íʾ³öOQ£¬BPµÄ³¤£¬Èý½ÇÐÎOPQÖУ¬OQ±ßÉϵĸ߿ÉÓÃBPµÄ³¤ºÍ¡ÏPBOµÄÕýÏÒÖµÇó³ö£¬Óɴ˿ɵóö¹ØÓÚS£¬tµÄº¯Êý¹ØÏµÊ½£®
£¨2£©±¾Ìâ·ÖÁ½ÖÖÇé¿ö£º
¢Ù¡ÏBQP=¡ÏBOA£¬´ËʱPQ¡ÎOA£¬ÄÇôBQ=PB•cos¡ÏPBO£®ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
¢Ú¡ÏBPQ=¡ÏBOA£¬´ËʱBP=BQ•sin¡ÏPBO£®ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
£¨3£©±¾ÌâÖÐÎÞ·ÇÊÇÁ½ÖÖÇé¿öOQ¡ÍPQ»òOP¡ÍQP£¬¿É·Ö±ð±íʾ³öPO¡¢QO¡¢PQÈýÌõÏ߶εij¤£¬È»ºóÓù´¹É¶¨Àí½øÐÐÇó½â¼´¿É£®
£¨4£©¢ÙÈç¹ûÈý½ÇÐÎOPQÊÇÕýÈý½ÇÐÎÄÇô£¨3£©ÖбíʾÈýÌõÏ߶γ¤µÄ±í´ïʽ±ØÈ»ÏàµÈ£¬¿Éͨ¹ý½â·½³ÌÇó³ö´ËʱtµÄÖµ£¬Èç¹û·½³ÌÎÞ½âÔò˵Ã÷Èý½ÇÐÎOPQ²»¿ÉÄÜÊÇÕýÈý½ÇÐΣ®
¢Ú˼·ͬ¢Ù£¬Éè³öQµãµÄËÙ¶È£¬È»ºó±íʾ³öÈýÌõÏ߶εij¤£¬ÁîÈýÌõÏ߶εıí´ïʽÏàµÈ£¬¼´¿ÉÇó³öQµÄËٶȺÍtµÄÖµ£®
£¨2£©±¾Ìâ·ÖÁ½ÖÖÇé¿ö£º
¢Ù¡ÏBQP=¡ÏBOA£¬´ËʱPQ¡ÎOA£¬ÄÇôBQ=PB•cos¡ÏPBO£®ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
¢Ú¡ÏBPQ=¡ÏBOA£¬´ËʱBP=BQ•sin¡ÏPBO£®ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
£¨3£©±¾ÌâÖÐÎÞ·ÇÊÇÁ½ÖÖÇé¿öOQ¡ÍPQ»òOP¡ÍQP£¬¿É·Ö±ð±íʾ³öPO¡¢QO¡¢PQÈýÌõÏ߶εij¤£¬È»ºóÓù´¹É¶¨Àí½øÐÐÇó½â¼´¿É£®
£¨4£©¢ÙÈç¹ûÈý½ÇÐÎOPQÊÇÕýÈý½ÇÐÎÄÇô£¨3£©ÖбíʾÈýÌõÏ߶γ¤µÄ±í´ïʽ±ØÈ»ÏàµÈ£¬¿Éͨ¹ý½â·½³ÌÇó³ö´ËʱtµÄÖµ£¬Èç¹û·½³ÌÎÞ½âÔò˵Ã÷Èý½ÇÐÎOPQ²»¿ÉÄÜÊÇÕýÈý½ÇÐΣ®
¢Ú˼·ͬ¢Ù£¬Éè³öQµãµÄËÙ¶È£¬È»ºó±íʾ³öÈýÌõÏ߶εij¤£¬ÁîÈýÌõÏ߶εıí´ïʽÏàµÈ£¬¼´¿ÉÇó³öQµÄËٶȺÍtµÄÖµ£®
½â´ð£º½â£º£¨1£©S=-0.3t2+
tµ±t=
ʱ£¬S×î´ó=
£®
£¨2£©¢Ù¡ÏBQP=¡ÏBOA£¬ÔÚÖ±½ÇÈý½ÇÐÎBQPÖУ¬BP=
BQ£¬
¼´5-t=
£¨4-t£©£¬
½âµÃt=0£®
¢Ú¡ÏBPQ=¡ÏBOA£¬ÔÚÖ±½ÇÈý½ÇÐÎBPQÖУ¬BQ=
BP£¬
¼´4-t=
£¨5-t£©£¬
½âµÃt=9£»
ÒòΪ0¡Üt¡Ü4£¬
¡àt=9²»ºÏÌâÒ⣬ÉáÈ¥£®
Òò´Ëµ±t=0ʱ£¬¡÷BPQºÍ¡÷AOBÏàËÆ£®
£¨3£©Èô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬ÔòOQ¡ÍPQ»òOP¡ÍQP£¬ÉèQP¡ÍOQ£¬
ÔòPQ=
=
=
£®
PO=
=
=
£®
OQ=
=
=
¡Ùt£¨tÎ޽⣩£®
¡àQP²»ÓëOQ´¹Ö±
ÉèOP¡ÍQP£¬Ôò¡÷OPQ¡×¡÷PNQ
¡à
=
£¬
=
¡àPQ2=
t2£¬PQ2=OQ2-OP2=t2-t2+
t-9=
t-9
t2=
t-9£¬
½âµÃt=3£¬t=15£¨²»ºÏÌâÒâÉáÈ¥£©
¡àµ±t=3ÊÇ¡÷OPQÊÇÖ±½ÇÈý½ÇÐΣ®
£¨4£©¢ÙPO=
£¬OQ=t£¬PQ=
ÁîPO=OQ=PQ£¬½âtÎÞ½â
¡à¡÷OPQ²»ÄܳÉΪÕýÈý½ÇÐΣ®
¢ÚÉèQµÄËÙ¶ÈΪx£¬ÔòOQ=xt£®
OP2=t2-
t+9£¬OQ2=x2t2£¬PQ2=
t2-
t+12
ÁîOP2=OQ2=PQ2
½âµÃx=
£¬t=
ÉáÈ¥¸ºÖµ£¬Ôòt=
Òò´ËQµãµÄËÙ¶ÈΪ
£¬
t=
£®
| 3 |
| 2 |
| 5 |
| 2 |
| 15 |
| 8 |
£¨2£©¢Ù¡ÏBQP=¡ÏBOA£¬ÔÚÖ±½ÇÈý½ÇÐÎBQPÖУ¬BP=
| 4 |
| 5 |
¼´5-t=
| 4 |
| 5 |
½âµÃt=0£®
¢Ú¡ÏBPQ=¡ÏBOA£¬ÔÚÖ±½ÇÈý½ÇÐÎBPQÖУ¬BQ=
| 4 |
| 5 |
¼´4-t=
| 4 |
| 5 |
½âµÃt=9£»
ÒòΪ0¡Üt¡Ü4£¬
¡àt=9²»ºÏÌâÒ⣬ÉáÈ¥£®
Òò´Ëµ±t=0ʱ£¬¡÷BPQºÍ¡÷AOBÏàËÆ£®
£¨3£©Èô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬ÔòOQ¡ÍPQ»òOP¡ÍQP£¬ÉèQP¡ÍOQ£¬
ÔòPQ=
| PB2-QB2 |
=
| (5-t)2-(4-t)2 |
=
| 9-2t |
PO=
| PM2+OM2 |
=
(
|
=
t2-
|
OQ=
| OP2-PQ2 |
=
t2-
|
=
t2-
|
¡àQP²»ÓëOQ´¹Ö±
ÉèOP¡ÍQP£¬Ôò¡÷OPQ¡×¡÷PNQ
¡à
| NQ |
| PQ |
| PQ |
| OQ |
| ||
| PQ |
| PQ |
| t |
¡àPQ2=
| 1 |
| 5 |
| 18 |
| 5 |
| 18 |
| 5 |
| 1 |
| 5 |
| 18 |
| 5 |
½âµÃt=3£¬t=15£¨²»ºÏÌâÒâÉáÈ¥£©
¡àµ±t=3ÊÇ¡÷OPQÊÇÖ±½ÇÈý½ÇÐΣ®
£¨4£©¢ÙPO=
t2-
|
(
|
ÁîPO=OQ=PQ£¬½âtÎÞ½â
¡à¡÷OPQ²»ÄܳÉΪÕýÈý½ÇÐΣ®
¢ÚÉèQµÄËÙ¶ÈΪx£¬ÔòOQ=xt£®
OP2=t2-
| 18 |
| 5 |
| 15 |
| 25 |
| 24 |
| 5 |
ÁîOP2=OQ2=PQ2
½âµÃx=
| 8 |
| 5 |
-15¡À20
| ||
| 13 |
ÉáÈ¥¸ºÖµ£¬Ôòt=
20
| ||
| 13 |
Òò´ËQµãµÄËÙ¶ÈΪ
| 8 |
| 5 |
t=
20
| ||
| 13 |
µãÆÀ£º±¾Ì⿼²é¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓдý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽºÍµÈÑüÌÝÐΣ¬Ô²µÄÓйØÐÔÖʵȣ®ÒªÊìÁ·ÕÆÎÕ²ÅÄÜÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿